Enfin, les liaisons ioniques de ce cristal (K...O= 2,60; 2,60; 2,75 Å) sont tout à fait comparables à celles que l'on trouve dans les sels de potassium d'acides organiques: acide fumarique: 2,65; 2,89 Å (Gupta, 1956); acide maléique: 2,82; 2,89; 2,87; 3,03 Å (Darlow & Cochran, 1961); acide glycuronique: 2,79; 2,85; 2,97; 2,99 Å (Gurr, 1963).

Références

- BERTINOTTI, F., BONAMICO, M., BRAIBANTI, A., COPPOLA, F. & GIACOMELLO, G. (1959). Ann. Chim. Roma, 49, 825. BOLTON, W. (1963). Acta Cryst. 16, 166.
- BUSING, W. R. & LEVY, H. A. (1962). I.U.Cr. World List of Crystallographic Computer Programs. Groningen.
- CRAVEN, B. M. (1964). Acta Cryst. 17, 282.
- CRAVEN, B. M. & MASCARENHAS, Y. (1964). Acta Cryst. 17, 407.
- DARLOW, S. F. & COCHRAN, W. (1961). Acta Cryst. 14, 1253.
- ELLER, G. VON (1955). Bull. Soc. Franç. Minér. Crist. 78, 157.
- GAY, R. (1954). Bull. Soc. Franç. Minér. Crist. 77, 1330.
- GUPTA, M. P. (1956). Acta Cryst. 9, 264.

- GURR, G. E. (1963). Acta Cryst. 16, 690.
- *International Tables for X-ray Crystallography* (1952). Vol. I, p. 105. Birmingham: Kynoch Press.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- JEFFREY, G. A., GHOSE, S. & WARWICKER, J. O. (1961). Acta Cryst. 14, 881.
- MAZÉ, M. (1963). Bull. Soc. Franç. Minér. Crist. 86, 196.
- PAULING, L. (1960). The Nature of the Chemical Bond. p. 228. Ithaca: Cornell Univ. Press.
- RÉRAT, C. (1962a). C. R. Acad. Sci. Paris, 254, 3110.
- RÉRAT, C. (1962b). Acta Cryst. 15, 427.
- RÉRAT, B. & RÉRAT, C. (1963a). Bull. Soc. Franç. Minér. Crist. 86, 86, 286.
- Rérat, B. & Rérat, C. (1963b). Bull. Soc. Franç. Minér. Crist. 86, 194.
- RÉRAT, B. & RÉRAT, C. (1963c). Bull. Soc. Franç. Minér. Crist. 86, 423.
- RÉRAT, B. & RÉRAT, C. (1963d). Bull. Soc. Franç. Minér. Crist. 86, 287.
- Rérat, B. & Rérat. (1963e). Bull. Soc. Franç. Minér. Crist. 86, 286.
- ROLLETT, J. S. & SPARKS, R. A. (1960). Acta Cryst. 13, 273.
- TSOUCARIS, D. (1964). Bull. Soc. Franç. Minér. Crist. 87, 57.

Acta Cryst. (1965). 18, 777

The Crystal Structure of Clinoclase, Cu₃AsO₄(OH)₃

BY SUBRATA GHOSE AND M. FEHLMANN

Institut für Kristallographie, Eidg. Technische Hochschule, Sonneggstrasse 5, Zürich 6, Switzerland

AND M. SUNDARALINGAM*

Crystallography Laboratory, University of Pittsburgh, Pittsburgh 13, Pennsylvania, U.S.A.

(Received 9 June 1964)

The dark bluish green mineral clinoclase, Cu₃AsO₄(OH)₃, is monoclinic, space group $P2_1/c$, with $a_0 = 7.24$, $b_0 = 6.46$, $c_0 = 12.38$ Å; $\beta = 99^{\circ}30'$. The heavy atoms were located from three-dimensional Patterson sections, using Buerger's minimum function method. The light atom positions were revealed in the subsequent three-dimensional Fourier synthesis. The atomic parameters were refined by the method of full-matrix least squares, using three-dimensional data.

The coordination of the three independent copper atoms is essentially fivefold distorted tetragonal pyramidal. Cu–O (or OH) distances within the coordination plane average 1.96 Å, while the fifth Cu–O (or OH) bond varies in length from 2.30 to 2.51 Å, and the sixth from 2.84 to 3.32 Å. The copper coordination plane is always curved in a boat shape towards the fifth ligand. Clinoclase contains two sets of Cu₂(OH)₄O₄ dimeric groups, each formed by two tetragonal pyramids, sharing an edge of the equatorial plane. One set of dimers forms an infinite chain by sharing two OH corners with two adjacent dimers. These chains, occuring zigzag with respect to each other in the unit cell, sandwich between them isolated Cu₂(OH)₄O₄ dimers and AsO₄ tetrahedra, thus giving rise to a complex sheet structure running parallel to the (100) plane. These complex sheets are held to each other through long Cu–O and O–H ... O bonds.

Introduction

As part of a structural study of basic copper arsenates and phosphates, the structure determination of clinoclase, $Cu_3AsO_4(OH)_3$, and cornetite, $Cu_3PO_4(OH)_3$ has been undertaken. In spite of the chemical analogy, these two minerals are not isostructural. Clinoclase crystallizes in the monoclinic system, but cornetite in the orthorhombic system. In contrast, basic copper phosphate-arsenate pairs, like libethenite, Cu_2PO_4 (OH), and olivenite, $Cu_2AsO_4(OH)$ (Heritsch, 1938,

^{*} Present address: Department of Biological Structure, University of Washington, Seattle, Washington, U.S.A.

1940; Walitzi, 1963), pseudomalachite, $Cu_5(PO_4)_2$ (OH)₄ and erinite, $Cu_5(AsO_4)_2(OH)_4$ (Ghose, 1963; Berry, 1951) are isostructural. The structure of cornetite has been described recently (Fehlmann, Ghose & Finney, 1964). In this paper, the structure determination of clinoclase is reported.

Crystal data and experimental

A very good description of the morphology, as well as the determination of the optical characters, unit-cell dimensions and space group is given by Palache & BCITY (1946), Beautifully crystallized dark bluish green needles of clinoclase from Majuba Hill, Nevada (Harvard Museum, No. 100792) have been made available for this study through the courtesy of Prof. Clifford Frondel. The crystals are slender needles, elongated [010] and tabular parallel to [100]. The cell dimensions of clinoclase, determined by Berry (Palache & Berry, 1946), are given below (a and c interchanged):

> Monoclinic, 2/m $a_0 = 7.24$, $b_0 = 6.46$, $c_0 = 12.38$ Å; $\beta = 99^{\circ}30'$. Space group: $P2_1/c$ Cell contents: $4[Cu_3AsO_4(OH)_3]$ $D_m = 4.38$ g.cm⁻³. $D_x = 4.42$ g.cm⁻³. μ for Cu $K\alpha = 201.4$ cm⁻¹.

Optical properties of clinoclase from Majuba Hill, determined by Hurlbut (Palache & Berry, 1946), corresponding to this orientation are as follows:

Orientation	n	Pleochroism
X Y b	1·756 1·874	Pale blue-green Biaxial $(-)$ Light blue-green $2V = 50^{\circ}$ (meas.)
Z near c	1.896	Benzol-green $r < v$, very strong

It should be noted that the refractive indices along Y and Z directions are approximately the same, while that along X is significantly smaller. This fact, coupled with the negative optic sign, indicates a sheet structure parallel to (100). The perfect (100) cleavage strongly favors this idea, which is ultimately confirmed by the following structure determination.

For the intensity measurements, a crystal measuring approximately 0.15×0.5×0.25 mm was used. Weissenberg multiple-film photographs of zero through the fourth layer about [010] and [100] were taken with Cu Ka radiation. The intensities were visually estimated. To correct the intensities for $\alpha_1 - \alpha_2$ splitting, the measured α_1 intensity was multiplied by 1.5, 1.3 and 1.2 for complete, semi-complete and incomplete resolution respectively. Since it was difficult to apply proper absorption corrections to the data taken about [100], they were corrected for Lp factors and were primarily used to normalize data taken about [010]. The h0l, h11, h21, h31 and h41 intensities were corrected for Lp factors and absorption, the absorption corrections being made, assuming the crystal to be a cylinder with $\mu R = 2.0$.

The infrared spectrum of clinoclase was recorded on a Perkin Elmer spectrometer, model 13, with a calcium fluoride prism, the Nujol mull technique being used.

The structure determination

Two Patterson projections along the shorter axes aand b were first computed. The Patterson projections along a showed that almost all the Patterson peaks are located in sections at v=0, $\frac{1}{4}$ and $\frac{1}{2}$. As a first approximation to the three-dimensional Patterson function, sharpened Patterson sections along v=0, $\frac{1}{4}$ and $\frac{1}{2}$ were computed, with programs written by Shiono (1960). The Patterson function was sharpened by multiplying F^2 with M(S), where

$$M(S) = \sum_{j=1}^{N} \sum_{j=1}^{N} \int_{j=1}^{N} f_{0j} f_{0j}^{j} \cdot \exp\left[-2P \sin^2\theta/\lambda^2\right] \cdot$$

P was taken to be equal to 1.

The Harker section at $v = \frac{1}{2}$ (Fig. 1(c)) contains many strong peaks which made the correct choice of Harker peaks difficult. However, it was noticed that two sets of three strong peaks made two triangles, ABC and DEF. These triangles correspond to triangles A'B'C'and D'E'F' occurring on the section at v=0 (Fig. 1(a)) in dimension, as well as, relative orientation. This fact suggested that these peaks are due to the extra symmetry present in the structure and are not true Harker peaks. Of the remaining smaller peaks, K, L and Mare of equal height and have been chosen as possible Harker maxima. The fact that all the strong peaks in [100] Patterson projections are located at $v=0, \frac{1}{4}, \frac{1}{2}$ indicates that the y coordinates of the heavy atoms must be close to either $\frac{1}{8}$ or $\frac{3}{8}$. A peak, corresponding to the vector (2x, 2y, 2z) must occur on the Patterson section at $v = \frac{1}{4}$. A systematic search for peaks of this type in the section corresponding to the Harker peaks K, L, M, led to the peak marked 2K (Fig. 1(b)). Use of this peak as the point of superposition led directly to the correct choice of origin of the M_2 maps. The minimum function was derived graphically, as described by Buerger (1959), in two stages. The first M_2 map was derived with the use of Patterson sections at v=0and $\frac{1}{4}$, and the second, using sections at $v = \frac{1}{4}$ and $\frac{1}{2}$.

Occurrence of three strong peaks k, l, m on these minimum maps corresponded to the Harker maxima K, L, M respectively. Since the structure contains four heavy atoms, namely three copper and one arsenic, occurrence of only three strong peaks in the minimum maps was surprising. After the structure determination was completed, it was realized that the missing heavy atom corresponds almost exactly in position to that of peak n in the minimum maps. This peak was overlooked as a possible heavy atom position because of its lower peak height. A comparison of the M_2 map (superposition of two sections) and the second threedimensional Fourier synthesis is made in Figs. 2(a)and 2(b). It will be noticed that they are strikingly similar. The first structure factor calculation of h0l reflections using the three heavy atom positions found from the M_2 maps (treated as Cu atoms for calculation) yielded an R index of 0.51. The corresponding Fourier projections showed a peak at the l position, twice as high as the other peaks at positions k and m. This high peak at l was considered to be due to two overlapping heavy atoms. The next structure factor calculation including four heavy atoms decreased R to 0.41. Inclusion of some peaks in the structure factor calculation, which appeared in the electron-density projection as oxygen atoms, reduced R further to 0.38. However, it was difficult to separate the two superposing heavy atoms, and this projection did not refine further. This difficulty was overcome through the application of the "Optimal Shift" method (Niggli, Vand & Pepinsky, 1961), using the expressions given below for the plane group P2:

$$\begin{aligned} \Delta x_i &= -h\Delta F f_i \sin 2\pi (hx_i + ky_i) / \\ &\quad 4\pi (h^2 + k^2) \sum_j f_j^2 \sin^2 2\pi (hx_j + ky_j) \\ \Delta y_i &= -k\Delta F f_i \sin 2\pi (hx_i + ky_i) / \\ &\quad 4\pi (h^2 + k^2) \sum_j f_j^2 \sin^2 2\pi (hx_j + ky_j) . \end{aligned}$$

Fig. 1. Sharpened three-dimensional Patterson sections of clinoclase, $Cu_3AsO_4(OH)_3$ at $v=0,\frac{1}{4}$ and $\frac{1}{2}$ respectively.

Fig. 2. (a) Superposition of two M_2 maps, derived from Patterson sections of clinoclase at v=0 and $\frac{1}{4}$ an $v=\frac{1}{4}$ and $\frac{1}{2}$. (b) Threedimensional electron density distribution of clinoclase between y=0 and $\frac{1}{2}$. Contours are drawn at equal but arbitrary intervals.

The two overlapping heavy atoms were successfully separated and the projection was refined by difference Fourier syntheses till R was 0.28.

The first 0kl structure factor calculation with the contributions from the heavy atoms only, using the z parameters from the [010] projection and y parameters as $\frac{1}{8}$ or $\frac{3}{8}$, yielded an R index of 0.43. Slight adjustments of the y parameters reduced R to 0.30. Inclusion of some peaks appearing in the electrondensity projection as oxygen atoms reduced R further to 0.21. It was found, however, that some of the peaks, which were presumed to be due to oxygen atoms, did not agree in both projections. A three-dimensional Fourier synthesis was computed next, using the signs of structure factors, calculated with the contributions from the four heavy atoms only. All the seven oxygen positions were found readily from the three-dimensional Fourier sections. The first three-dimensional structure factor calculation, including all the non-hydrogen atoms, yielded an R index of 0.33. A second threedimensional Fourier synthesis, followed by a structure factor calculation, reduced R to 0.27.

Further refinement was carried out by the fullmatrix least-squares method, using the program written by Busing, Martin & Levy (1962), on an IBM 7090 computer. Hughes's (1941) weighting scheme was used. The scattering factors for Cu, As and O were taken from International Tables for X-ray Crystallography (1962). 33 positional, 11 isotropic thermal and 5 scale factor parameters were varied simultaneously. Convergence was reached after eight cycles of refinement. The final R index is 0.142 for all reflections and 0.137 omitting the unobserved reflections. The final atomic parameters are listed in Table 1 and the observed and calculated structure factors in Table 2. A list of bond lengths and angles is given in Table 3. The average standard deviations of bond lengths are: Cu-Cu, ± 0.0038 , Cu-As, ± 0.0033 , Cu-O, ± 0.013 , As-O, ± 0.013 and O-O, ± 0.018 Å. Since the absorption corrections could not be properly made, these values may be too low. A more realistic estimate of the standard errors would be to increase these values by 50%.

Description of the structure

The stereochemistry of the cupric ions

The coordination of the three crystallographically different cupric ions in clinoclase is essentially distorted

tetragonal pyramidal. Two of them, however, have sixth ligands at much greater distances, completing the distorted tetragonal bipyramid.

The Cu(1) atom is surrounded by two OH groups and two oxygen atoms approximately in a plane at 1.91, 1.91, 1.97 and 2.07 Å. The fifth ligand oxygen, O(4), is at a distance of 2.31 Å, and the sixth ligand, OH(3) at a distance of 2.84 Å. The copper coordination plane is curved in a boat shape towards the fifth ligand, the deviation from planarity being as much as 19° . The fifth ligand, O(4) deviates somewhat from the expected pyramidal position, the angles subtended by O(4) at Cu(1) with the equatorial ligands being 89.4, 113.6, 92.4 and 84.0° . The sixth ligand deviates considerably from the expected octahedral position, as evidenced by the O(4)–Cu(1)–OH(3) angle, which is 161.7° .

The coordination of Cu(2) is tetragonal pyramidal. One oxygen atom and three OH ions surround Cu(2) approximately in a plane at 1.99, 1.95, 1.89 and 1.93 Å. The fifth ligand, O(2) lies at a distance of 2.51 Å. There is apparently no sixth ligand at a reasonable distance, the sixth nearest anion being O(4) at a distance of 3.32 Å. The Cu(2)-coordination plane is slightly curved towards the fifth ligand, the maximum deviation from planarity being about 8°.

The Cu(3) atom forms a planar group with three oxygen atoms and one OH ion at distances of 2.02, 1.99, 1.98 and 1.90 Å. The fifth ligand is an OH(2) group at 2.30 Å and the sixth, OH(1) at 2.99 Å. The Cu(3)-coordination plane is strongly curved in a boat shape towards the fifth ligand, the deviation from planarity being as much as 26° . The fifth ligand, OH(2), deviates from the expected pyramidal position, as shown by the angles subtended by OH(2) at Cu(3) with the equatorial ligands, which are 104.8, 87.2, 99.3 and 88.9°.

There are two sets of dimeric $\text{Cu}_2(\text{OH})_4\text{O}_4$ ions in clinoclase, each consisting of two tetragonal pyramids, sharing an equatorial edge. The first dimer is formed by tetragonal pyramids around Cu(1) and Cu(2) sharing the equatorial edge O(3)–OH(2). The second dimer is formed by two tetragonal pyramids around two Cu(3) atoms, related by a center of symmetry, sharing the equatorial edge O(1)–O(1). In the first dimer the pyramidal ligands are OH ions, but in the second, oxygen atoms. In both dimers, the pyramidal ligands occur *trans* to each other.

		1 5	/ 5 + /5	
Cu(1)	0.7877 ± 0.00034	0.1389 ± 0.00052	0.3291 ± 0.00019	0.98 ± 0.078
Cu(2)	0.8150 ± 0.00032	0.3824 ± 0.00048	0.1275 ± 0.00018	0.85 ± 0.077
Cu(3)	0.3872 ± 0.00034	0.3532 ± 0.00052	0.4127 ± 0.00019	0.89 ± 0.075
As	0.3088 ± 0.00021	0·1510 <u>+</u> 0·00040	0.1796 ± 0.00012	0.24 ± 0.069
O(1)	0.4121 ± 0.00138	0.0667 ± 0.00275	0.0724 ± 0.00082	0.20 ± 0.173
O(2)	0.1623 ± 0.00179	0.3453 ± 0.00265	0.1346 ± 0.00102	0.72 ± 0.217
O(3)	0·1758 <u>+</u> 0·00148	-0.0568 ± 0.00280	0.2141 ± 0.00087	0.41 ± 0.180
O(4)	0.4728 ± 0.00137	0.2173 ± 0.00248	0.2861 ± 0.00081	0.20 ± 0.176
OH(1)	0·7797 <u>+</u> 0·00137	0.2026 ± 0.00284	0·4791 <u>+</u> 0·00081	0.26 ± 0.180
OH(2)	0.1911 ± 0.00158	0·5979 ± 0·00266	0.3209 ± 0.00090	0.48 ± 0.203
OH(3)	0.1780 ± 0.00159	0.1736 ± 0.00246	0.4080 ± 0.00093	0.47 ± 0.200

Table 1. Atomic parameters of clinoclase, Cu₃AsO₄(OH)₃

SUBRATA GHOSE, M. FEHLMANN AND M. SUNDARALINGAM

n	× 1	Pobe	Fcalc	h	۲ 1	Pobs	Poslo	ħ	x 1	r _{obs}	"calc		ħ	k 1	Pobe	"calo
•	0 2	102.3300	112,1871	1	1 -11	12.6400	7.0408	2	1 -2	81.2300	0 71.9382	1	:	2 -4	43.8600	63.9446
	8	99.0600	88.4909	i	1	29,9911	30.4478	į	1	44.9100	41.5204			3 ./	230.0400	267.7276
:	1 0	58.1700	61.2093	1	1 .7	25.2600	19.6156	ŝ	ii	79.540	84.1415				45.1380	33.2270
:	0 12	69.8300 56.4600	53.7680	1	1 - 1	47.0800 67.370n	35.7032 43.5278	5	1 4	51.390	0 72.9031 0 52.8694		2	2 -4	63.2800 17.6200	52.5¥78 21.6909
i	0 -14	38.6700	25.3182 3.1985	1	1 -4	68.1400 49.6000	54.9153	;	1 1	59.130	0 67.6334 0 62.3141		2	2 -7	10.2900	.1953 15.7436
i	0 -10	133.9600	161.1996	i	1	49.5100	36.1414		1 /	38,740	0 45.5468		2	2 0	29.2500	30.0065
1	8 -6	191.5100	235.7496	i	1 0	8.7100	3.5711			35.900	0 36.1361		2	2 3	62.1900	54.8724
1	0 -2 0 0	51.4200	57.8929	1	1 2	87.7300 51.9600	132.8294	ě	1 -13	62.330	0 76.6439		2	2 5	26.5200 71.9000	24,9849
1	8 2	53.8500 82.5400	46.1597	1	1 3	47.0400 37.7300	46.6475	6	1 -12	25.070	0 22.6762		2	2 0 7	29.7100	18.1096
i	A H	54.3400	48.0672	1	1 5	73.5200	70.7739	6	1 -10	33.370	0 27.3976			2 4	25.4400	23.5546
i	0 12	97.1100	101.8600	i	1 7	31.9200	28.0796	6	1 -6	13.260	4.1260		ż	2 10	0	1.3736
2	0 -14	128.2100	146.8240	1	1 0	114.8800	7.2470	6		100.150	97.8451		5	2 12	17.6200	16.2429
2	A -12 0 -10	53.7000	11.1105	1	1 10	64.4600 59.9800	75.3084 64.7396	6	1 -	48.560	0 93.1637 0 41.7855		2	2 13 2 14	104.6200 14.3700	126.8765
?	0 -6	24.6800 148.7300	22.9295	1	1 12	26.1200	26.5570	6	1 -3	16.960	0 8.4926 0 .8970	1	5	2 -15	59.0600 30.9000	74.1904
2	0 -4	167.1700	185.0011	ī	1 14	8.9200	11.4360	6	1 -1	99.190	86.1108			2 -13	95.4900	88.0056
2	0 2	106.5109	110.2085	2	1 -15	39.9300	40.6812	6	1 1	27.860	26.3469		í	2 -11	38.9800	37.7876
2	0 4	154.4700	186.6779	2	1 -14	16.9200 23.2500	11.8186	ě	1 3	104.400	0 134.5577		;	2 -10	31.7/80	29.0016
2	0 5	89.1600 14,2300	96.4507	2	1 -12	41.5700	33.8379	6	1 4	17.720	0 19.0833	1	5	2 -8	26.2000	20.7566
ž.	0 12	14.5600	12.1483	2	1 -10	24.4500	21.0436		1 4	94.460	0 115.4008	1	i.	2 .0	10.4100	9.5853
3	0 -12	33.1000	23.7795	2	1 -8	37.8000	31.4076	6	ù é	47.010	47.4354		í	2 -4	16.0700	11.7346
3	8 -10	109.1100	113.9559	2	1 - 7	56.2100	40.5225	;	1 -12	13.770	0 71.4138	į	ŝ	2 - 2	99.8300 80.0400	114.0460 76.3240
3	n -A 8 -4	87.6300 116.8700	119.5500	2	1 -5	46.6600 23.6100	32.2087 27.2753	;	1 -11	41.5600	0 35.4702 0 46.4922		5	2 -1 2 0	62.6400 14.9000	57.4030 15.6339
3	0 -2 0 U	81.5000 126.1000	81.9598 118.1216	2	1 -3	63.8600 83.8700	53.3773	7	1 -9	63.6300	0 47.7491 0 45.5176	1		2 1	65.6700	56.3453
ş	0 2	119.6500	135.4471	2	i -i	57.7800	55.5342	ź	-		1.2507		í.	2 3	79.2800	85.8032
3		40.9709	30.2989	2	1 2	24.1400	18.9451	2	1 -5	8.150	6.9199			2 5	134.2500	180.6409
3	0 10	43.4300	48.4978	2	1 3	71.9100 96.3800	84.2370 102.8550	;	1 -3	87.3100	0 76.9693 0 13.4584	1	5	2 7	27.840n 56.5200	28.3501 68.9524
1	0 -14	73.2600 41.6700	37.7232	2 2	1 5	91.8500 10.7100	92.1365 4.9829	7,	1 -2	96.2000	0 92.3318 0 87.5313		5	2 M 2 V	27.9401 78.4000	20.6558
1	0 -10	45.7200 40.1300	41.3241 37.2020	2	1 7	114.1800	141.6846	;	1 0	11.8100	0 7.7184	2		2 10	12.3900	11.6484
÷.	0 - 6	83.3400	81.8443	2	1 4	7.1500	3.6381	Ż	1 2	13.1000	0 13.8723			2 12	19.9800	18.6178
4	0 -?	58.0600	50.2776	2	1 11	49.6500	50.7+85	÷	1	7.430	n 5.6309	2	ì	2 -14	8.6200	4.7713
-	0 2	165.7900	177.7615	2	1 12	45.9100	40.8562 34.5588	7	1 1	60.580	0 43.9414 N 70.2631			2 -13 2 -12	72.8500	66.0957 4.2490
4	0 4	83.080h 108.7104	84.1131 142.9205	23	1 14	52.1300 7.2800	61.3839	7	1 /	14.0000	0 14.8891		1	2 -11	80.5900 27.5700	74.7769
1	л н п 10	12.5800	7.3419	3	1 -14	16.7600	11.9069		1 -11	19.760	21.25/6	:		2 -4	9.8100	4.1389
4	0 12	52.0700	58.2021	3	1 -12	24.3600	22.0364	8	1 -	27,480	21.9797			2 -7	60.9100	61.7395
3	0 -12	29.7200	21.2457	3	1 -10	101.8040	N9.7654	ě	1 -6	14.9000	0 47.4743 0 12.9136			2 -5	57.8800 115.9600	52.0551 118.7207
5	0 -16	13.4000	52.2690	3	1 - 9	40.3700	5.4471 35.4153	8	1 - 4	106.4000	0 80.6803 0 48.7849			2 -4	15.5200	12.4312
5	0 -6	98.2809 61.4270	101.9746	3	1 -/	101.3700	87.1920		1 -3	87.770	1.2401	2		2 - 2	14.3800	10.1689
5	6 -2 6 b	113.4400	112.3530	3	1 - 2	52.2100	34.6104		1 -1	48.480	44.5730			2 0	17.0600	15.8404
5	0 2	11.4000	5.3464	3	1 - 3	131.4200	144.0285	8	1 1	5.3100	3.4464			2 2	42.1300	36.9537
5	• •	25.2000	23.7442	3	1 -1	105.6000	97.8461	8	1 3	20.750	0 62.1200 1 16.7920			2 3	43.5900 32.6000	40.1406 35.0986
3	n 14	6.7901	7.4096	3	1 1	143.3900	174.6806 118.8068	8	1 4	3.4100	1.3441 0 41.4833		1 1	2 6	61.0800 12.1700	72.5724
6	0 -12	78.9600 43.9400	35.1468	3	1 2	35.9000	34.9268	9	1 -6	19.8100	21.6406	-		2 7	36.4400	42.4809
6	u - b	66.4500	58.4097 100.5/53	3		114.8500	142.2361		i -4	38.5200	37.8924			2 9	67.1300	68.9970
6	n -4	75.1500	70.4>76	3	1 4	66.4800	/2.1993	,	1 -2	8.8410	6.7259	2		2 11	39.9700	41.3726
6	n	A1.3104	83.9193	3	1 8	30.4600	33.7439	ů,	2 2	44.630	1 44.8790 1 3.6050		5	2 12 2 -14	11.0400 10.7300	13.0488
ő	0 4	16.9700	1/.5478	3	1 10	30.0800 52.0600	31.9995 59.7794	0	2 3	130.8200 27.3400	157.4199		i I	2 -13	23,3500	3.6522
6	0 0	25.8500 23.9700	20.4533 24.1505	3	1 11	43.6200	45.0437	0	2 5	70.4600	43.9241		5	2 -11	40.3700	31.0476
\$	n 10 0 -12	19.1300	21.0351 30./832	3	1 13	15.2500	13.3(59	ő	2 7	226.6200	252.0437		ŝ	2 -4	44.6900	43.2085
7	0 -10	85.4300	86.5318		1 -14	87.7000	10.9/50	0	2 4	89.1000	79.9922		ŝ	2 -7	34.3100	40.9791
ź	1 - 0	43.7940	35.7787		1 -12	7.5340	6.7511	0	2 11	21.0500	22.4263 63.2180		5	2 - 6	24.4100	17.3474 3.8451
2	n -2	42.9380	27.1475	4	1 -11	88.0910 19.2510	73.1486	0	2 12	29.6400 118.5900	27.8898			2 -4	0 72.4800	8.9219
7	0 2	44.4700 32.3300	36.8075	:	1 -9 1 ->	42.7600 20.2800	46.2641	0	2 14	24.3600	23.2403			2 - 2	38.0500	36.7929
;	n 4	45.6300	34.9119	:	1 -/	133.1900	138.3569	1	2 -15	54.230	59.2570			2 0	19.6800	15.5483
8	A -1#	27.1110	36.2193		1 -5	33.2300	23.02/1	i	2 -13	66.3100	64.2346			2 2	38.6400	37.6450
ě	0 -0	A6.5200	74.9455		1 -3	29.7200	24.2059	1	2 -12	29.5100 98.7500	29.5428 10/.2006			23	36.6400 23.2500	40.7/34 19.7678
ě	n -2	44.1904	32.6-85	:	1 -1	98.1/00 17.1400	12.4037	1	2 -10	34.4400 28.9700	29.7147			2 5	47.7400	48.0489
Å	0 H	100.3600	91.7.22	:	1 0	136.7300	124.5511	1	2 -	93.5609	72.8014		•	2 /	34.7500	39.3462
8	n 4 H -4	43.8700 72.5280	44.8181 43.5197	:	1 2	65.1640	63.1.42	i	2 -	30 E 1	6.2851	5		2 4	8.5000	10.2/66
9	0 -2	50.990# 22.9500	53.1005	-	1	17.6300	17.8016	1	2 -4	74.3000	65.6649	5		2 10	27.7200	1.7307
ó	1 1	1	5.4094	4	; ?	78.7900	40.1370	1	2 -3	1#2.8100	236.6669	6		2 -12 2 -11	6.310n 9.060n	1.1726
	1 3	22.7400	28.3493	:	1 /	53.4400 62.1900	63.1453 A1.9174	1	2 2	20.2300	14.9/52	6		2 -10	23.3940	25.6782
8	1 4	107.1600 49.3800	28.9/00	:	1 4 1 10	47.0800	54.9428	1	2 4	50.7311	48.2421	6		2	12.770	1.4126
:	1 7	84.090.) 158.800.0	52.4F24 121.1F30	4	1 11	7.5000	5.5K41	:	2 4	14.1409	3.0431			2	30.4500	6.9403
:	1 0	77.640.0	65.7×97 25.8577	2	1 -14	67.4700	80.3/23	i	2 1	51.9909	48.7356	6		2 -4	14.7400	13.8060
į.	1 14	37.1401	26.4+63	5	1 -14	23.4200	22.3530	1	2 10	106.6500	111.6415	6		2 -2	13.9500 29.6804	*.6F14 17.4162
ž	1 12	5.0800	5.1273	5	1 -10	115.9900	12.9110	1	2 11	59.0300 26.2400	58.7141 20.8481	6		2 -1	48,5011	56.2/99 10.2478
i	1 13	46.7410	82. 1122	5	1 -8	23.1409 39.2100	23.4%18 39.2/57	1 2	2 13	20.3200 7.4/00	18.9448	6		2 1	60.7900 9.6500	70.1307
1	1 -15	13.1600 28.8600	14.5/33 28.8174	5	1 -0	88.0500 44.7160	93.238R 41.9/85	2 2	2 -14	40.2400	32.9547			2 1	24.0800	24.1772
1	1 -14	17.890n 58.070n	17.4191 44.4467	5	5 -5	16.8500	16.7*84	2	2 - 12	44.5400	38.4343	6		2 3	50.9100	51.2716
1	1 -12	67.1200	61.2472	;	1 - 5	107.6500	102.3459	ź	2 -10	147.4000	5.4386	ŝ		5 5	51.0544	4/.3/7/

.

Table 2 (cont.)

h	¥ 1	Poba	Fenlo	h	k 1	P.0110	Porle	H	, .	1	P.1.2	Pcnle	h	k 1	Poba	Peale
	3 9	50.5000	23.3467	2	3 V	26.6300	27.3247	2		5 -10	30.2300	29.5352	3	4 -2	64.4980	48.3742
•	2 4	38.6700	37.1+48	1	3 10	35.0600	33.5155	2		3 -0.	92.1800	93.1978		• • • • • • • • • • • • • • • • • • • •	14.3400	8.9465
÷	2 -10	34.1300	31.0161		3 11	42,4200	35.8474			3 •/	34.1800	29.4321	:		19.4960	10.7322
ż	2	2.8600	8.A051	;	3 13	39.1900	39.7158	j	,	3	20,5000	15.4030	ī	4 2	55.9600	41.3513
?	2 - N	15.2000	10.9-31	3	3 -14	17.0800	16.8540	3	2	3 - 5	42.1500	46.5536	3	4 3	11.0100	1.4340
;	2 -/	101.7800	2.7171	3	3 -13	32,4600	27.0230			3 - 3	20.5500	11.2507		4 4	30.4100	32.4-18
;	2 -5	48.8700	35,4405	3	3 • 11	69.6000	A4.0438	÷		3 -1	90.5600	104.2071		4 6	11.2444	3.7.57
?	2 -4	0	4.7471	3	3 -10	58.8100	54.1131	7	, .	3 C	62.5900	58.1445	3	4 /	29.8000	35.1122
?	2 • 3	182.2200	83.9493	3	3 - 4	20.9200	20.1351	1	: :	3 1	46.5400	50,4048	2	4 6	56.3100	4/.3480
÷	2 -1	171034	.3381	3	3 -7	57.5400	56./680		5	3 3	87.2700	96.7682	1	4 19	35.2900	36.9010
,	5 0	n	16.0472	Ĵ	3 -6	72.1900	73.7+14		,	3 4	18.9100	13,9051	Ĵ	4 ii	19.4300	20.7142
4	2 1	11 4100	1.6-10	3	3 - 9		2.4461	1		3 5	61.6940	68.3723	4	4 -14	24.7200	30.3545
÷	2 .	46.7100	46.1394	3	3	47.8800	47.4284			3 - 7	43.1100	27.7091		4 -12	24.0580	23.4848
?	2 4	n	5.8444	3	3 - 1	96.5100	112.4526	i	i .	5 -A	21,3860	22.2036	4	4 -10	26.3900	22.0166
-	2 2	57.4400	56.0447	3	3 1	119.9700	168.7+45			3	111.7400	108.4505	4	4 -0	18.6000	5.9245
÷	2 1	27.4150	36.4/42	3	1 1	42.4300	39.9891				17.4400	15.6512	:		20.7400	21.3740
8	5 -4	59.3600	72.0+26	š	3 4	70.6000	87.9010			3 -7	33.6900	38.4344	4	4 -	48,9310	43.346A
8	2 - 4	12.8600	10.9917	3	3 5	40.8800	38.0474			3 -1	33.7400	41.1143	4	4	0	10.4+14
ě	2	26.1200	24.7485	3	3 7	41.9900	39.4809			3 4	33,2900	28.6107			57.3580	2.1414
	2 -5	34.8600	37.07/2	Ĵ	3 8	9.0900	6.0724		i 3	3 2	50.5000	50.4278	i i	4 -2	44.0900	40.158A
	2 -4	11.4900	12.3590	3	3 9	64.9500	72.8475	9	2	4 1	42.9000	70.5755	4	4 -1	23.6900	14.3/97
ě.	2 -7	0	1.4403	3	3 10	56,7200	50.9799				43.3700	52.4360	:		58.5460	54.1112
8	2 -1	53.6200	54.2144	š	3 12	28,9500	26.9748			4 4	125.9600	154.4453	4	4 2	102.3200	111.4407
	2 1	43 9780	2.4245	4	3 -14	27.3600	31.0201			4 7	41.6900	44.3408	4	4 3	17.0040	5.3486
ă	2 2	19.4600	18.6711		3 -13	83.0400	60.5094				67.3100	60.5689		1 1	9.5200	20.2495
	2 3	16.5000	19.1206	4	3 -11	90,7800	87.6732			4 8	47.0700	47.4228		4 6	69.4900	80.1315
	2 -3	28.8180	10.3120	4	3 -10	9.6300	7.3350	9		4 4	0	.8093		4 ?	8.5300	1.0673
9	2 - 2	16.7200	22.0641		3 -9	30.9900	30.0422			4 11	25.6400	21.9688		4 0	25.6901	34.0120
:	3 1	54 1700	15.4450	4	3 -7	112.2300	158.7485	Ċ	, i	4 12	55.7000	55.7408	4	4 10	24.2500	23.3950
	3 5	27.3100	22.1247	:	3 - 6	54.9000	.50.0413			4 13	23.7800	22.98+6	2	4 -12	11.6743	4.0231
	3 4	24.7700	11.4172		3 -4	67.6000	71.5132			4 -12	11.5800	8.7418	;	4 -10	32.3400	.9139
	3 5	32.2300	31.0221	•	3 - 3	24.0900	16.0207	1	i -	4 -11	68.6100	67.1504		4 -4	52.4000	40.9163
i	3 /	85.2000	P8.8105		3 -2	73.8000	71.4180			4 -10	28.8680	119.4459	2	4 - 4	31.4800	22.943/
	3 #	27.5540	19.1020		3 0	101.8400	108.1701		i -	4 -8	98.3900	112.4498		4 -6	57.9800	51.2*04
	3 10	44.6100	44.1796	4	5 1	126.4100	154.7032	1	L •	4 -7	20.2100	17.8#29	5	4 ->	17.3600	13.9437
•	3 11	93.0100	101.0401			62.2900	62.9820				103.9500	112.2P60	2	4 - 3	62.5400 25.7300	20.1492
	3 12	0	2.9431	4	3 4	32.1900	32.2492		1	4 -4	118.3100	137.4467	ŝ	4 -?	61.2140	55.011/
	3 13	46.8400	44.2286	•	3 5	60.5900	62.3850	1		4 - 3	92.8107	108.93/7	5	4 -1	34.2600	32.1378
i	3 -13	26.2600	14.8493		3 6	54.9300	63.8/40				24.7600	25.6498	~	4 1	74.3900	81.0061
1	3 -12	31.6000	27.5314	4	3 8	26.8100	23.8405		i -	4 n	17.0300	8.4818	5	- 4 - ž	22.0400	18.4122
i	3 -10	<i>**</i> .1/00	.4189	:	3 9	69.7200	66.5404	1		4 1	36.8800	43.9838	2	4 5	۰ ۲۰۰۰	. 4~95
1	3 -4	17.7600	13.5442		3 10	7.7400	2.3049			: :	109.4800	25.0482	-	::	16.3090	7. 3844
1	3 - H	41.1400	35.7673		3 -13	23.4200	21.2086	i	i 4	4 5	58.4880	99.2163	5	4 1	22.7000	17.4782
i	3 -4	13.5400	10.7082	2	3 -12		2.6722	1		•	47.8909	44.5436	2		9.8801	7.4474
1	3 - 7	0	4.5438	ś	3 -10	54.2800	58.1012	1		4 6	33.3200	38.9588	Ś	4 9	37.1700	43.2392
1	3 -4	27.9980	23.3560	5	3 -9	65.0000	59.3099	1		4 9	51.6580	52.8215	6	4 -10	10.4900	6.6737
ī	3 -1	66.9600	90.6388	3	3 -8	18.6500	15.1414	1		4 10	62.6100	65.7441	:		52.6700	50.311
1	3 0	45.1600	69.4115	5	3 -6	41.8100	42.7954	i		4 12	61.0500	70.8977	6	4 -1	20.1700	12.6515
1	3 7	68.3380	75.1839	2	3	57.5600	60.5992	1		4 13	5.3300	5.1747	6	· - n	61.1300	50.3+16
ī	3 3	82.3200	95.9190	3	3 -3	112.5100	47,8784	5		4 -12	38,9600	42.8899	2		21.8500	13.9951
1	3 4	72.4800	84.7147	5	3 -2	18.9700	11.7101	ž		4 -11	45.0000	41.1562	6	4 - 3	0	3.1168
î	3 6	82.5700	85.8098	2	3 -1	71.4600	72.3010	2		4 -10	38.1900	30.6988	6	4 - 7	95.2200	81.9813
1	3 7	0	2.4717	ŝ	3 1	31.4900	25.4431	2		4 -A	9,7800	2.5517	ŝ	4 0	62.3300	46.8/43
1	3 4	34.8800	34.6930	2	3 2	13.3700	9.3332	2	•	4 -1	43.0600	38.4006	6	4 1	45.1200	50.4511
i	3 10	38.1100	30.5480	2	3 3	88.4800	111.0475	2		4 - 4	88.6600	89.9115		4 2	54.1100	38.2476
1	3 11	76.4800	76.6367	ś	3 5	83,7900	113,2024	2			108.6200	138.0393	Ň		30.5100	24.1469 26.4.04
1	3 12	40.6700	37.9836	5	3 6	48.2000	45.7797	2		4 -3	49.2500	49.59.5	6	4 5	7.7100	6.2/43
î	3 14	9.2900	5.9199	2	3 7	23.1100	19.9417	2			55.8200	68.2464	•	1 1	30.0000	29.5-19
5	3 -14	21.0100	16.3805	ś	3 4	59.3600	58.1595	2			110.4100	155.381	,	4 - 4	15.9400	15.9303
2	3 -13	0	2,4134	5	3 10	34.6100	40.2553	5	1	• 1	73.7800	93.7402	7	4 - 8	20.4700	15.4+17
2	3 -11	18.2300	1/.6106	2	3 -12	13.2900	12.4131	2			73.4100	91.0648	;	4 -/		2.4942
5	3 -10	14.5300	12.1235	ő	3 -10	12.3600	7.2108	ż		Ä	15.9300	5.9426	÷	4 -5	61.6200	39.14/0
ž	3 -8	38.5000	29.7984	•	3 - 4	32.2000	21.4929	5	1		47.7300	52.9475	?	4 -4	11.2700	8.5/#1
5	3 -1	87.0500	95.5346	ě	3 -/	96.8300	2.474	8		2	/6./50Q 31.9680	93.5178	;	4 - 3	39.6100	14.9-73
2	3 -0	50.2700	45.2295	6	3 -6	36.4000	24.0441	ž	-	ц <u>й</u>	58.2600	65.7280	;	4 -1	12.2800	12.0135
2	3 -4	87.0900	87.9351	6	3 - 5	91.5000	98,4935	2	1		24.6600	22.0724	?	4 0	27.0000	21.5.50
2	3 -3	103.5100	116.4469	ě	3 -3	20.3000	16,1413	2		11	23.6100	31.8P00 26.1012	;		30.1300	/.1/3/
2	3 -2	40.4300 24,200P	21.5500	6	3 • ?	19.8300	9.0/43	3	•	-13	6.9000	7. 94 34	,	4 3	36.5700	31.1.42
2	3 n	96.4200	141.9301	6	3 -1 3 0	¥8.8700 57.0600	116.4431	3	1	-12	11.2900	12.0417	?	4 4	35.2300	34.1.23
2	3 1	75.6900	88.9466	6	3 1	64.5600	74.1399	ů,	- 4	-16	99,9100	122.3397	á	· · ·	11.8200	38.3-11
2	3 3	107.9700	130.5426	•	4 ?	71.9800	79.1945	3	- 4	-9	35.5500	33.4930		4 -4	36.4800	34.44.54
2	3	69.0900	53.8258		3 4	8.0000	11.7219	3	- 1	;	/0.1400 48.0900	/3.6284	8 A	4 -3	6.9/0h 14.73hh	4.8490
2	3 5	93.3400 48.3880	115.3437	6	3 4	40.8600	40.1970	š		- 6	41.8900	42.3160	ě	4 -1	26.6000	33.9480
ž	š ,	119.5200	167.0025	6 A	3 4	77.1300	72.4865	j	4		26.5900	21.4596	a	4 9	45.8980	47.9/25
2	3 M	0	1.3472	ő	3 A	19.7200	14.3493	š	- 4	• 3	55.R000	54, 1195				

In the Cu(1)–Cu(2) dimer, the shared edge, OH(3)–OH(3) (2.59 Å) is much shorter than the unshared edges, which average 2.81 Å. The Cu(1)–Cu(2) distance within the dimer is 2.984 Å and the coordination planes around Cu(1) and Cu(2) make an angle of about 173° with each other. These dimers polymerize to form an infinite chain, running parallel to the *c* axis, by sharing two OH(1) groups with two adjacent dimers. The equatorial planes of the dimers lie zigzag, roughly parallel to (100). The edges of two adjacent dimers, namely, OH(3)–OH(1) and OH(1)–O(2) make an angle of 61·1° with each other within the dimeric chain (Fig. 5).

Within the isolated Cu(3)–Cu(3) dimer, the shared edge, O(1)–O(1) (2.52 Å) is much shorter than the unshared edges, which average 2.89 Å. The Cu(3)–Cu(3) distance, 3.127 Å is considerably longer than the corresponding distance in the Cu(1)–Cu(2) dimer.

The arsenate group

The tetrahedral arsenate group deviates considerably from regularity. The As-O distances may be grouped into two classes, namely, As-O(1), As-O(3) averaging 1.73 Å and As-O(2), As-O(4) averaging 1.68 Å. The difference in these two sets of bond lengths ($\Delta/\sigma=2.5$) is probably significant. Qurashi & Barnes (1963) have Table 3. Interatomic distances and angles in clinoclase, Cu₃AsO₄(OH)₃

(I)	x, y, z
(II)	-x, -y, -z
(III)	$-x, \frac{1}{2}+y, \frac{1}{2}-z$
(IV)	$x, \frac{1}{2} - y, \frac{1}{2} + z$
(V)	1 + x, y, z
(VI)	1-x, 1-y, -z
(VII)	$1-x, \frac{1}{2}+y, \frac{1}{2}-z$
(VIIÍ)	$1-x, -\frac{1}{2}+y, \frac{1}{2}-z$
ÌΧ)	$x_{1} - 1 + y_{2} z_{1}$
(X)	1+x, -1+y, z
(XÍ)	1-x, 1-y, 1-z
(XII)	$x_1 \frac{1}{2} - y_1 - \frac{1}{2} + z$
(XIII)	$1 + (1 - x), -\frac{1}{2} + v, \frac{1}{2} - z$
(XIV)	-1+x, y, z
•	

Within the Cu(1) polyhedron

1 012 8	OU(1) = O(1)(1) = O(2)(1)(1)	01.10
1.913 A	OH(1) - Cu(1)(1) - O(2)(VIII)	91.1
1.969	O(2)(VIII)-Cu(1)(I)-OH(2)(VII)	92.7
1.906	OH(2)(VII)-Cu(1)(I)-O(3)(VII)	81.2
2.066	O(3)(VII)-Cu(1)(I)-OH(1)(I)	94.1
2.310	O(4)(I) - Cu(1)(I) - OH(1)(I)	89.4
2.842	O(4)(I)-Cu(1)(I)-O(2)(VIII)	113.6
2.771	O(4)(I)-Cu(1)(I)-OH(2)(VII)	92.4
2.805	O(4)(I) - Cu(1)(I) - O(3)(VII)	84.0
2.586	OH(3)(V)-Cu(1)(I)-OH(1)(I)	80.6
2.915	OH(3)(V)-Cu(1)(I)-O(2)(VIII)	82.1
2.984	OH(3)(V)-Cu(1)(I)-OH(2)(VII)	96.3
3.586	OH(3)(V)-Cu(1)(I)-O(3)(VII)	81.5
3.055	OH(1)(I)-Cu(1)(I)-OH(2)(VII)	174.8
2.934	O(2)(VIII)-Cu(1)(I)-O(3)(VII)	161.7
3.156	O(4)(I)-Cu(1)(I)-OH(3)(V)	161.7
3.227		
3.593		
3.256		
	1.913 Å 1.969 1.906 2.066 2.310 2.842 2.771 2.805 2.586 2.915 2.984 3.586 3.055 2.934 3.156 3.227 3.593 3.256	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Within the Cu(2) polyhedron

Cu(2)(I)-O(3)(VII) -OH(2)(VII) -OH(1)(XII) -OH(3)(VII)	1·990 Å 1·949 1·894 1·934	O(3)(VII)-Cu(2)(I)-OH(2)(VII) OH(2)(VII)-Cu(2)(I)-OH(1)(XII) OH(1)(XII)-Cu(2)(I)-OH(3)(VII) OH(3)(VII)-Cu(2)(I)-OH(3)(VII) OH(3)(VII)-Cu(2)(I)-O(3)(VII)	82·1° 92·2 93·8 92·0
-O(2)(V) -O(4)(VII) O(3)(VII)-OH(2)(VII) OH(2)(VII)-OH(1)(XII) OH(1)(XII)-OH(3)(VII)	2·513 3·320 2·586 2·769 2·795	$\begin{array}{c} O(2)(V) - Cu(2)(1) - O(3)(V11) \\ O(2)(V) - Cu(2)(1) - OH(2)(V11) \\ O(2)(V) - Cu(2)(1) - OH(1)(X11) \\ O(2)(V) - Cu(2)(1) - OH(3)(V11) \\ O(3)(V11) - Cu(2)(1) - OH(1)(X11) \end{array}$	96.6 88.6 88.9 92.1 172.0
OH(3)(VII)–O(3)(VII) O(2)(V)–O(3)(VII) O(2)(V)–O(3)(VII) O(2)(V)–OH(2)(VII) O(2)(V)–OH(1)(XII) O(2)(V)–OH(3)(VII)	2·822 3·379 3·142 3·116 3·227	OH(2)(VII)-Cu(2)(I)-OH(3)(VII) O(2)(V)-Cu(2)(I)-O(4)(VII)	174•0 136•8

Within the Cu(3) polyhedron

Cu(3)(I) - O(1)(IV)	2·023 Å	O(1)(IV)-Cu(3)(I)-O(1)(VII)	77∙6°
-O(1)(VII)	1.990	O(1)(VII)-Cu(3)(I)-O(4)(I)	93.5
-O(4)(I)	1.983	O(4)(I)-Cu(3)(I)-OH(3)(I)	93.3
-OH(3)(I)	1.901	OH(3)(I)-Cu(3)(I)-O(1)(IV)	97•4
-OH(2)(I)	2.296	OH(2)(I)-Cu(3)(I)-O(1)(IV)	104.8
OH(1)(I)	2.988	OH(2)(I)-Cu(3)(I)-O(1)(VII)	87.2
O(1)(IV) - O(1)(VII)	2.516	OH(2)(I)-Cu(3)(I)-O(4)(I)	99.3
O(1)(VII)–O(4)(I)	2.894	OH(2)(I)-Cu(3)(I)-OH(3)(I)	88.9
O(4)(I)-OH(3)(I)	2.824	O(1)(IV)-Cu(3)(I)-O(4)(I)	153.7
OH(3)(I) - O(1)(IV)	2.948	O(1)(VII)-Cu(3)(I)-OH(3)(I)	172.6
OH(2)(I) - O(1)(IV)	3.427	OH(2)(I)-Cu(3)(I)-OH(1)(I)	147-4
OH(2)(I)-O(1)(VII)	2.964		
OH(2)(I)–O(4)(I)	3.268		
OH(2)(I)-OH(3)(I)	2.953		

.

.

.

Table 3 (cont.)

Within the AsO_4 group								
As(I)-O(1)(I) -O(2)(I) -O(3)(I)	1·716 Å 1·678 1·746	O(1)(I)-As(I)-O(2)(I) O(1)(I)-As(I)-O(3)(I) O(1)(I)-As(I)-O(4)(I)	108·2° 105·9 110·3					
-O(4)(1)	1.677	O(2)(I) - As(I) - O(3)(I)	108.2					
O(1)(I) - O(2)(I)	2.750	O(2)(I) - As(I) - O(4)(I)	113.4					
O(1)(I) - O(3)(I)	2.762	O(3)(I) - As(I) - O(4)(I)	110.5					
O(1)(I)-O(4)(I)	2.785							
O(2)(I) - O(3)(I)	2.774							
O(2)(I) - O(4)(I)	2.804							
O(3)(1)–O(4)(1)	2.814							
	Copper-co	pper distances						
Cu(1)(I)-Cu(2)(I)	2·984 Å	Cu(3)(I)–Cu(2)(VII)	3∙376 Å					
Cu(1)(I)-Cu(2)(XIII)	3.286	Cu(3)(I)-Cu(3)(XI)	3.127					
Cu(2)(I)-Cu(3)(VII)	3.376							
Copper-arsenic distances								
As(I)-Cu(1)(VII)	3·226 Å	As(I)-Cu(3)(VIII)	3·268 Å					
As(I)-Cu(3)(I)	3.132							
н	ydrogen bond	distances and angles						
(OH(1)(I)-O(1)(V	/II) 2·752 Å*						
Cu(2)(IV) = OH(1)(I) = O(1)(V)	(II) 117.0°	Cu(1)(I) - OH(1)(I) - Cu(2)(IV)	149·2°					
O(1)(VII)-OH(1)(I)-Cu(1)(I	l) 93·1							
	OH(2)(I)-O(3)	(V) 2·804 Å						
O(3)(V)-OH(2)(I)-Cu(1)(I)	97·2°	Cu(1)(I) - OH(2)(I) - Cu(2)(I)	101·4°					
O(3)(V) - OH(2)(I) - Cu(2)(I)	108.3	Cu(1)(I) - OH(2)(I) - Cu(3)(VIII)	115.8					
O(3)(V) - OH(2)(I) - Cu(3)(V)	II) 108·9	Cu(2)(I) - OH(2)(I) - Cu(3)(VIII)	122.2					
	OH(3)-O(2)(I	V) 2.828 Å						
O(2)(IV) - OH(3)(I) - Cu(1)(X)	(IV) 97.9°	$C_{11}(1)(XIV) = OH(3)(I) = C_{11}(2)(VII)$	1) 84·7°					
O(2)(IV) = OH(3)(I) = Cu(2)(V)	(III) 101·0	Cu(1)(XIV) - OH(3)(I) - Cu(3)(I)	143.2					
O(2)(IV) - OH(3)(I) - Cu(2)(V)	99.1	Cu(2)(VII)-OH(3)(I)-Cu(3)(I)	123.3					

* See text.

suggested that in the AsO₄ distorted tetrahedra of arsenates, bond lengths of about 1.64 ± 0.04 Å represent essentially covalent double bonds, while those of about 1.74 ± 0.03 Å represent covalent single bonds. It is most likely that As-O(2) and As-O(4) bonds in clinoclase possess considerable double bond character. The difference in the As-O bond lengths can be explained on the basis of bonding schemes of the oxygens concerned. Thus, O(1) and O(3) are involved in two further short Cu-O bonds, while O(2) and O(4) are involved in one short and one long Cu-O bond. It is interesting to note that the bonds with considerable double bond character, As-O(2) and As-O(4), subtend the largest angle (O(2)-As-O(4)), 113.4°, consistent with the largest bond-pair/bond-pair interaction.

The complex sheet structure

Two sets of Cu(1)-Cu(2) dimeric chains are arranged in a zigzag fashion with respect to each other in the unit cell. These chains sandwich between them isolated Cu(3)-Cu(3) dimers and AsO₄ tetrahedra. The complex sheet structure thus formed runs parallel to the (100) plane. The first set of chains, occurring at $x \simeq 0.2$, $y \simeq 0.75$ in neighboring cells, are bonded to each other through the AsO₄ tetrahedra and the Cu(3)- tetragonal pyramids. The AsO₄ tetrahedron shares corners O(2), O(3) with two Cu(1)-coordination planes, while the Cu(3)-tetragonal pyramid shares corners OH(2), OH(3) with two Cu(2)-coordination planes, belonging to two adjacent dimeric chains (Fig. 4). The Cu(3)-Cu(3) dimers are connected to each other through AsO₄ groups, sharing corners, O(1) and O(4). Two sets of dimeric chains, occurring at $x \simeq 0.2$, $y \simeq 0.75$ and $x \simeq 0.8$, $y \simeq 0.25$, are cross linked by the Cu(3)-Cu(3) dimeric groups, sharing one OH(3) corner each with two Cu(2)-coordination planes, belonging to two different dimeric chains (Fig. 5). The chains are further joined together by long Cu-O bonds between Cu(1) and O(4) (2.31 Å). The complex sheets are held together by long Cu–O bonds, namely Cu(1)–OH(3), 2.84 Å, Cu(2)–O(2), 2.51 Å, and a hydrogen bond $O-H(2) \cdots O(3)$, 2.80 Å (Fig. 3). These long bonds are naturally weak and the perfect (100) cleavage breaks just these bonds.

The hydrogen bonds

The infrared spectrum of clinoclase at the 3μ region consists of a sharp peak at 3530 cm⁻¹ and a broad band, presumably due to superimposition of two separate peaks, at 3325 cm⁻¹. The sharp peak at 3530 cm⁻¹ The hydrogen bond between OH(3) and O(2) (O-H(3) \cdots O(2)=2.83 Å) binds two adjacent Cu(1)-Cu(2) dimers closer together, while that between OH(2) and O(3) (O-H(2) \cdots O(3)=2.80 Å) helps bind the complex sheets to each other. The distance between OH(1) and O(1) (2.75 Å) is a reasonable hydrogen bonding distance. However, if OH(1) is really hydrogen bonded to O(1), the configuration of the OH(1) oxygen would be highly distorted trigonal planar. In view of this fact, as well as the infrared evidence, it is suggested that the OH(1) group is virtually free. In contrast, all the three OH groups in the structure of cornetite, $Cu_3PO_4(OH)_3$ are involved in hydrogen bonding.

Discussion

The stereochemistry of the copper(II) ions in the structure of clinoclase, though essentially tetrahedral pyramidal, shows a transitional state between tetragonal bipyramidal on the one hand, as evidenced by a sixth ligand at a much greater distance, and a trigonal bipyramidal on the other, by means of a curvature of the coordination plane in a boat shape towards the fifth ligand. A similar stereochemistry of the copper-(II) ions has previously been noted in the structure of

Fig. 3. A view of the clinoclase structure down the b axis, showing the complex sheet structure.

Fig. 4. A part of the complex sheet structure in clinoclase viewed down the *a* axis between x=0 and $\frac{1}{2}$, showing the linkage of the Cu(1)-Cu(2) dimeric chains through AsO₄ groups and Cu(3)-tetragonal pyramids.

cornetite, $Cu_3PO_4(OH)_3$ (Fehlmann, Ghose & Finney, 1964). Cornetite, however, possesses a three-dimensional network structure. In both of these structures, the cupric ions occur in two sets of dimers, one set of which polymerizes further into an infinite chain. The dimeric chain found in clinoclase is apparently a new type, while that found in cornetite is similar in principle to the chain found in euchroite, $Cu_2AsO_4(OH)$. $3H_2O$ (Giuseppetti, 1963).

The tendency of the cupric ions to form isolated dimers by sharing an edge of the coordination plane or a pyramidal edge has been noted recently in a number of inorganic, as well as metal-organic, cupric complexes; e.g. libethenite, Cu₂PO₄(OH) and olivenite, Cu₂AsO₄(OH) (Heritsch, 1938, 1940; Walitzi, 1963), callaghanite, Cu₂Mg₂CO₃(OH)₆. 2H₂O (Brunton, Steinfink & Beck, 1962), dolerophanite, CuOSO₄ (Flügel-Kahler, 1963), LiCuCl₃. 2H₂O (Vossos, Fitzwater & Rundle, 1963), KCuCl₃ and NH₄CuCl₃ (Willet, Dwiggins, Kruh & Rundle, 1963), Cu₂Cl₄(CH₃CN)₂ and Cu₃Cl₆(CH₃CN)₂ (Willet & Rundle, 1964), acetylacetone-mono-(o-hydroxyanil) copper(II) (Barclay & Hoskins, 1963), anhydrous copper formate (Barclay & Kennard, 1961), N,N'-ethylenebis(salicylidemineiminato)copper(II) (Hall & Waters, 1960), copper bis-8-hydroxyquinoline (Bevan, Graddon & MacConnell, 1963), etc. The polymerization of the dimers to form an infinite chain is known so far in the structures of clinoclase, Cu₃AsO₄(OH)₃, cornetite, Cu₃PO₄(OH)₃ and euchroite, $Cu_2AsO_4(OH)$. $3H_2O$.

The complex sheet structure found in clinoclase is a new type, in contrast to the simple distorted-octahedral sheet structures, found so far in basic cupric compounds (Ghose, 1963). The arsenate group forms an integral part of the sheet in clinoclase, while in erinite, $Cu_5(AsO_4)_2(OH)_4$ it binds the distorted octahedral sheets together into a three-dimensional network.

Professors C. Frondel, Harvard University, and V. P. Gianella, Reno, Nevada, kindly provided clinoclase crystals for this investigation. The authors are indebted to professor G. A. Jeffrey, University of Pittsburgh, for the earlier part of the computations, which were carried out at the University of Pittsburgh Computation and Data Processing Center and to the IBM, Extension Suisse for a gift of free time on the IBM 7090 computer. Professor A. Niggli, Zürich, suggested the use of the Optimal Shift method. To him and to Professor F. Laves thanks are due for their interest and encouragement. Pauline K. Persing Ghose kindly prepared the diagrams. This research has been supported in part by the Swiss National Science Foundation.

References

- BARCLAY, G. A. & KENNARD, C. H. (1961). J. Chem. Phys. 34, 3289.
- BARCLAY, G. A. & HOSKINS, B. F. (1963). Acta Cryst. 16, A66.
- BERRY, L. G. (1951). Amer. Min. 36, 484.
- BEVAN, I. A., GRADDON, D. P. & MacCONNELL, J. F. (1963). Nature, Lond. 199, 373.
- BRUNTON, G., STEINFINK, H. & BECK, C.W. (1962). Acta Cryst. 11, 169.

Fig. 5. A partial view of the clinoclase structure down the *a* axis, showing the cross-linkage of two Cu(1)-Cu(2) dimeric chains through Cu(3)-Cu(3) dimers.

- BUERGER, M. J. (1959). Vector space and its application in crystal structure investigation. New York: Wiley.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). U. S. Atomic Energy Commission Report ORNL-TM-305.
- FEHLMANN, M., GHOSE, S. & FINNEY, J. J. (1964). J. Chem. Phys. 41, 1910,
- Flügel-Kahler, E. (1963). Acta Cryst. 16, 1009.
- GHOSE, S. (1963). Acta Cryst. 16, 124.
- GIUSEPPETTI, G. (1963). Period. Miner. 32, 131.
- HALL, D. & WATERS, T. N. (1960). J. Chem. Soc. p. 2639.
- HERITSCH, H. (1938). Z. Kristallogr. 99, 466.
- HERITSCH, H. (1940). Z. Kristallogr. 102, 1.
- HUGHES, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
- International Tables for X-ray Crystallography (1962). Vol.
 - III, 202. Birmingham: Kynoch Press.

- NIGGLI, A., VAND, V. & PEPINSKY, R. (1961). Computing methods and the phase problem in X-ray crystal analysis. p. 161. Oxford: Pergamon Press.
- PALACHE, C. & BERRY, L. G. (1946). Amer. Min. 31, 243.
- QURASHI, M. M. & BARNES, W. H. (1963). Canad. Min. 7, 561.
- SHIONO, R. (1960). University of Pittsburgh, Computing and Data Processing Center. Tech. Report No. 16.
- Vossos, P. H., FITZWATER, D. R. & RUNDLE, R. E. (1963). Acta Cryst. 16, 1037.
- WALITZI, E. M. (1963). Miner. petrogr. Mitt. 8, 614.
- WILLET, R. D., DWIGGINS, C., KRUH, R. F. & RUNDLE, R. E. (1963). J. Chem. Phys. 38, 2429.
- WILLET, R. D. & RUNDLE, R. E. (1964). J. Chem. Phys. 40, 838.

Acta Cryst. (1965). 18, 787

The Crystal Structure of γ -Dicalcium Silicate

BY DEANE K. SMITH*, AMAL MAJUMDAR[†], AND FRED ORDWAY[‡]

Portland Cement Association Fellowship, National Bureau of Standards, Washington, D.C., U.S.A.

(Received 29 April 1963 and in revised form 15 June 1964)

Least-squares analysis of three-dimensional single-crystal data confirms that γ -Ca₂SiO₄ is isostructural with olivine, Mg₂SiO₄. The relative positions of the SiO₄ tetrahedra and half the Ca atoms are similar to those in the β and α' forms. The remaining Ca atoms are surrounded by corresponding tetrahedra but considerably displaced. The γ form hydrates less rapidly than the β and α' forms because of the greater strength and uniformity of Ca–O bonding.

Introduction

The polymorphism of dicalcium silicate has been the subject of many investigations because of its importance to portland cement clinker and slag chemistry. Bredig (1950), Nurse (1952), Roy (1958), Smith, Majumdar & Ordway (1961) and others have agreed that four distinct crystalline modifications of Ca₂SiO₄ do exist. These forms, designated α , α' , β , and γ in order of decreasing temperatures of stability, exhibit complex equilibrium phase relations which are still not established beyond doubt. The presently accepted schematic free energy-temperature diagram (Smith, Majumdar & Ordway, 1961) is shown in Fig. 1.

Several authors discuss possible structure types for the various modifications and their interrelations. O'Daniel & Tscheischwili (1942) proposed the olivinetype structure for γ -Ca₂SiO₄ by its analogy with Na₂BeF₄. Greer (1932) apparently reached the same conclusion, from a study of (Ca,Mg)₂SiO₄ solid solutions. The α -Ca₂SiO₄ unit-cell dimensions were determined by Bredig (1950) and Douglas (1952) from the high temperature X-ray data of Van Valkenburg & McMurdie (1947), by showing an analogy with glaserite, Na₃K(SO₄)₂. The cell dimensions for the α' form, based on analogy with the K₂SO₄ structure, were determined by Bredig (1950) from the data of Trömel and verified by Douglas (1952). Although similarities between the α' and α forms were obvious from a com-

Fig. 1. The schematic free energy-temperature diagram for the polymorphs of Ca₂SiO₄. The solid lines indicate regions of apparent stability; the dotted lines, of apparent metastability.

^{*} Present address: Refractory Materials Division, Lawrence Radiation Laboratory, Livermore, California, U.S.A.

[†] Present address: Central Building Research Institute, Roorkee (U. P.), India.

[‡] Present address: Melpar Inc., Falls Church, Va., U.S.A.